
SPARQLess

SPARQL-less access to datasets in SPARQL endpoints

Daniel Crha

Charles University

Table of contents

31. SPARQLess

31.1 Running it in Docker

41.2 Using the library in code

52. User Guide

52.1 Running SPARQLess in Docker

72.2 Usage guide

122.3 Configuration

163. How it works

163.1 Overview of how it all works

213.2 Observation

243.3 Parsing

273.4 Postprocessing

293.5 Schema Creation

313.6 Querying

353.7 Model Checkpointing

383.8 Hot reloading

414. Developer Guide

414.1 Development

434.2 Editing documentation

Table of contents

- 2/44 - Charles University

1. SPARQLess

Many government and non-government organizations today publish various datasets

using Linked Data through SPARQL endpoints. These datasets are often also available

as JSON or RDF dumps, but having to write code to explore and query them can be

cumbersome. SPARQLess (/spark less/) aims to make it easier to use these datasets by

providing a tool which will give developers a more friendly interface which they likely

already know how to use - GraphQL.

SPARQLess is a library which is able to discover the schema of data within a SPARQL

endpoint, and subsequently construct an equivalent GraphQL schema. This schema

discovery works even in the absence of explicit metadata like RDFS or OWL, and so it is

relevant for most RDF datasets. It then uses the generated GraphQL schema to host a

GraphQL server, which processes incoming queries by translating them into SPARQL

queries and querying the underlying SPARQL endpoint. SPARQLess does not currently

support mutations, it provides a read-only view of the data.

Simply configure SPARQLess with the URL of a SPARQL endpoint which has some data

which interests you, and let it do its magic. Soon, you will have a GraphQL instance

which you can use to painlessly explore and query the data.

1.1 Running it in Docker

The easiest way to use SPARQLess is to use the provided Docker image. This method

lets you use SPARQLess as a black box which magically converts your SPARQL endpoint

into a GraphQL one.

Pull the Docker image from GitHub Container Registry to run a Docker container named `sparqless`. # The `-p` option binds port 4000 on the container to port 4000 on the local machine. # This is the port which the created GraphQL server will run on. # You can add the `-d` option to run the container detached from your terminal. # If you are on Windows, you can substitute the '\' characters for '`' (backtick) # characters to get a Powershell equivalent command. docker run \ -it --init \ --name sparqless \ -p 4000:4000 \ -e SPARQL_ENDPOINT="https://data.gov.cz/sparql" \ ghcr.io/mff-uk/sparqless:latest

The created container could take up to tens of minutes to do its job on large datasets.

Eventually, you will see a log message that the GraphQL endpoint is ready. When that

happens, visit http://localhost:4000/ and start using your new GraphQL endpoint!

You can learn more about using SPARQLess in a Docker container here.

1. SPARQLess

- 3/44 - Charles University

https://graphql.org/learn/
http://localhost:4000/

1.2 Using the library in code

Alternatively, you may wish to use SPARQLess as a JavaScript/TypeScript library.

SPARQLess aims to be both simple to use and extensible. A minimal usage looks like

this:

const config = new SPARQLessConfigBuilder() .sparqlEndpoint('https://data.gov.cz/sparql') .build(); const sparqless = new SPARQLess(); await sparqless.buildSchemaAndRunEndpoint(config);

If you want to get started right away, check out the usage guide.

If you want to find out how it works, find that out here.

If you wish to tinker with the project's code, or even contribute to it, here is a

development handbook.

1.2 Using the library in code

- 4/44 - Charles University

2. User Guide

2.1 Running SPARQLess in Docker

The use case for running SPARQLess in Docker is wanting to use it as a black box

which converts a SPARQL endpoint into a GraphQL one. There is virtually no

configuration required (or allowed) when using the Docker image, the only

configuration value is the SPARQL endpoint URL.

The most basic usage scenario looks like this:

Pull the Docker image from GitHub Container Registry to run a Docker container named `sparqless`. # The `-p` option binds port 4000 on the container to port 4000 on the local machine. # This is the port which the created GraphQL server will run on. # You can add the `-d` option to run the container detached from your terminal. # If you are on Windows, you can substitute the '\' characters for '`' (backtick) # characters to get a Powershell equivalent command. docker run \ -it --init \ --name sparqless \ -p 4000:4000 \ -e SPARQL_ENDPOINT="https://data.gov.cz/sparql" \ ghcr.io/mff-uk/sparqless:latest

WARNING: avoid reusing the same container for multiple SPARQL endpoints, unless

you understand the 'Mounting Artifacts' section below.

The docker run command warrants a bit of explaining:

-it and --init options are used as per the Node.js Docker best practices. Without them, Node is not able to

properly handle kernel signals such as interrupts invoked via Ctrl+C.

--name sparqless simply assigns a name to the created container for easier access via docker logs and so on.

Feel free to pick any name you want.

-p 4000:4000 maps port 4000 on the host to port 4000 on the container. The syntax is

-p <host_port>:<container_port> . You should not modify the <container_port> part, but you can change the

<host_port> part to configure which port the GraphQL server will run on.

-e SPARQL_ENDPOINT="https://data.gov.cz/sparql" is a required configuration value. It sets the SPARQL_ENDPOINT

environment variable to the URL to the SPARQL endpoint for SPARQLess to run against. If this variable is not

set, the container will terminate immediately.

-d will run the container as detached from the terminal. Very useful if you want the container to run in the

background. You can still see the container logs with docker logs -f sparqless .

•

•

•

•

•

2. User Guide

- 5/44 - Charles University

https://github.com/nodejs/docker-node/blob/main/docs/BestPractices.md#handling-kernel-signals

2.1.1 Mounting Artifacts

SPARQLess produces a handful of artifacts during its operation, namely:

observations.ttl : Turtle file containing RDF observations describing data in the SPARQL endpoint.

model-checkpoint.json : serialized model of the data in the SPARQL endpoint. On startup, SPARQLess check for

the existence of this file. If it exists, SPARQLess will load the model from this file instead of performing the

lengthy observation process. During observation, this file is automatically created.

generated-schema.graphql : GraphQL schema generated by SPARQLess. This is the same schema as the one

which is available in the created GraphQL endpoint.

You can learn more about the meaning of these artifacts by learning how SPARQLess

internally operates, which is described here.

If you want to access these artifacts produced by the Docker container, you should start

the container with a bind mount for the /app/data directory. The container stores the

aforementioned artifacts in this directory. This can be done by adding the following

arguments:

docker run \ -it --init \ --name sparqless \ -p 4000:4000 \ -e SPARQL_ENDPOINT="https://data.gov.cz/sparql" \ --mount type=bind,source="$(pwd)/containerdata",target=/app/data \ ghcr.io/mff-uk/sparqless:latest

By doing this, the containerdata folder in your working directory will be mounted as

/app/data inside the Docker container, and the artifacts will be stored inside this folder.

NOTE: make sure that the mounted folder has write permissions for all users.

Otherwise the container's runtime user will not be able to read or write these files. If

you are on Windows, you may want to mount a WSL folder instead, as it will allow you

to use Linux permissions for it.

NOTE: make sure that you don't leave a model checkpoint file in the mounted folder if

you start the container again with a different SPARQL endpoint! This will result in the

old model being used for the new SPARQL endpoint, which is no good. If you are not

mounting a volume in the /app/data folder, you should never reuse the same container

for multiple SPARQL endpoints.

•

•

•

2.1.1 Mounting Artifacts

- 6/44 - Charles University

https://en.wikipedia.org/wiki/Turtle_(syntax)
https://graphql.org/learn/schema/
https://docs.microsoft.com/en-us/windows/wsl/install

2.2 Usage guide

This page will explain how to set up SPARQLess for a given SPARQL endpoint, step-by-

step. If you want to use SPARQLess as a black box, you may prefer to use the Docker

image instead, as described here.

2.2.1 Installing dependencies

The project is written in TypeScript and uses Node.js as its runtime.

You will need to have the following installed before you proceed with usage:

Node 16.13.0 (Gallium LTS) - easily managed with nvm

npm

Once you have installed them, run npm install in the project root directory to install all

required dependencies with npm.

2.2.2 Library interface

The main functionality is encapsulated by the SPARQLess class in src/api/library.ts .

This class contains functions for the main tasks users may want to perform.

Most notably, the buildSchemaAndRunEndpoint functions is provided for users who want the

least configuration necessary. It is enough to simply set up a Config as shown in the

next section, and run SPARQLess like so:

const config = new SPARQLessConfigBuilder() .sparqlEndpoint('https://data.gov.cz/sparql') .build(); const sparqless = new SPARQLess(); // This method returns a Promise, so you should await it // if you want to do something after the server has started. sparqless.buildSchemaAndRunEndpoint(config);

The SPARQLess class also contains other functions which perform smaller parts of the

whole algorithm, which you may want to use if your task is more complex than convert

this SPARQL endpoint into a GraphQL endpoint. For example, the observeAndBuildSchema

function performs all the steps up to and including schema building, meaning one could

use it to perform some other operations on the generated GraphQL schema, rather than

starting a GraphQL server immediately.

•

•

2.2 Usage guide

- 7/44 - Charles University

https://github.com/nvm-sh/nvm

2.2.3 Edit configuration

There is one required configuration step before you run the library - configuring the

SPARQL endpoint you want SPARQLess to run against. This is done by creating a

Config object, which you will pass to SPARQLess functions. There is a pre-defined list

of known online and working endpoints in src/observation/endpoints.ts in case you just

want to try the project without having a specific SPARQL endpoint in mind, but you can

easily define your own.

A very basic configuration can look like this:

const config = new SPARQLessConfigBuilder() .sparqlEndpoint('https://data.gov.cz/sparql') .build();

As you can see, the only required configuration value when using the builder is

specifying the SPARQL endpoint. This example uses the SPARQLessConfigBuilder to build

the configuration. You may of course create the Config object manually, but using the

builder lets you make use of pre-defined sane defaults, allowing you to only specify the

configuration values you care about.

There are other configuration values which you are free to modify, but they have

sensible defaults in case you just want to get started. If you want to find out more about

additional configuration options, you can refer to the configuration guide. Alternatively,

you can examine their definition in the code, where they are also documented.

2.2.4 Run it

Putting together the above code examples is enough to start a SPARQLess instance,

which will observe the configured SPARQL endpoint and convert it to a GraphQL one.

Alternatively, if you are running SPARQLess from this repository, you can run

npm start , which will run src/main.ts , which is an entrypoint meant for starting the

server from withing this repository. In that case, edit your configuration there.

In the logs, you will see that it will first run some observations on the target endpoint to

collect information about its schema and the data contained within. This may take a

while, especially for large datasets, depending on the configuration parameters used.

As an example, the CZ Government open data endpoint shown in the configuraiton

above takes under 10 minutes to have a fully functional GraphQL instance running.

2.2.3 Edit configuration

- 8/44 - Charles University

https://data.gov.cz/english/

After observation is finished, you will see that a fully functional GraphQL interface is

available for you to explore and query at the configured port (localhost:4000 by

default).

2.2.5 Explore the schema

When you open the GraphQL interface in your browser, you will see an interface

provided by Apollo Server. It allows you to explore the schema including all of the

available classes, as well as their properties, relations, how many times they occur in

the dataset and other metadata.

The interface also allows you to interactively build and execute queries against the

endpoint.

2.2.6 Hot reloading

You may notice that with the default configuration, another round of observation will

start right after the GraphQL server is created.

2.2.5 Explore the schema

- 9/44 - Charles University

http://localhost:4000

This is hot reloading in action. Because fully observing the entire dataset in the

endpoint may take a long time, the initial observations are limited by the default

configuration - observation will only count up to 1000 occurences for each property in

the dataset.

After the server has started, it's fully available and functional for purposes of schema

exploration and querying. In the background, SPARQLess continues to make more

detailed observations, and seamlessly updating the GraphQL schema in the GraphQL

endpoint.

You can read more about hot reloading here.

2.2.7 Query the endpoint

If you are not yet familiar with how to compose GraphQL queries, you can learn more

about GraphQL here.

You can use the interface to query the data, either writing the query yourself, or using

the graphical query editor to compose the query.

2.2.7 Query the endpoint

- 10/44 - Charles University

https://graphql.org/learn/

NOTE: be careful running queries which have an unlimited result size! If your SPARQL

endpoint contains a large dataset, the query could either run for a very long time, or it

might just fail due to a timeout. You should use the limit and offset parameters

provided in each query field as shown in the image above.

2.2.7 Query the endpoint

- 11/44 - Charles University

2.3 Configuration

This page reviews and explains all available configuration options in SPARQLess.

Before you explore the individual configuration options, it is recommended that you

familiarize yourself with the basic concepts in SPARQLess described here.

2.3.1 Using the builder

The easiest way of building the SPARQLess Config object is by using the builder:

const config = new SPARQLessConfigBuilder() .sparqlEndpoint('https://data.gov.cz/sparql') .observation({ observationsOutputPath: path.join(__dirname, '../../observations.ttl'), }) .server({ port: 4242, }) .build();

You may of course create the Config object manually, but using the builder lets you

make use of pre-defined sane defaults, allowing you to only specify the configuration

values you care about.

The defaults specify a console logger and configure the server to run on port 4000 .

They also set many other settings to values deemed valuable for general use, such as

enabling hot reloading.

The rest of this document describes the values as present in the Config type, but all of

the information is also applicable to the builder.

2.3.2 General configuration

The root configuration type is Config , which exposes the following properties:

interface Config { endpoint: SPARQLEndpointDefinition; logger?: winston.Logger; observation: ObservationConfig; postprocessing: PostprocessingConfig; schema?: SchemaConfig; server: ServerConfig; hotReload: HotReloadConfig; modelCheckpoint?: ModelCheckpointConfig; }

The endpoint property is mandatory, since it contains the SPARQL endpoint which you

want SPARQLess to run against. An endpoint looks like this:

{ url: 'https://dev.nkod.opendata.cz/sparql', name: 'NKOD', }

There are other mandatory options, and so the recommended usage is with the

SPARQLessConfigBuilder , which specifies sane defaults. You can then use the builder to

configure individual options as required, allowing you to leave some mandatory options

as their defaults.

It is also very highly recommended to configure a logger , since it is very helpful to

know what exactly is happening, since the bootstrapping process can take a very long

time. The logging framework of choice is winston, so you are free to pass in any

2.3 Configuration

- 12/44 - Charles University

https://github.com/winstonjs/winston

winston logger. However, if you want a sensible default, you can use the DEFAULT_LOGGER

exposed by SPARQLess. Again, the SPARQLessConfigBuilder uses this default logger

automatically.

2.3.3 Specialized configuration

The remaining configuration values are more specialized, and they affect individual

components of SPARQLess.

All of these options have sane default values when used with the SPARQLessConfigBuilder ,

so it is recommended to first try not defining them (and thereby using the defaults). If

you find that you want to adjust the behavior of SPARQLess afterwards, then you can

look into modifying these values.

Observation

The observation property of Config modified the endpoint observation phase, and it

can contain the following values:

interface ObservationConfig { maxPropertyCount: number | undefined; propertySampleSize: number | undefined; ontologyPrefixIri: string; shouldDetectNonArrayProperties: boolean | undefined; shouldCountProperties: boolean | undefined; observationsOutputPath: string | undefined; }

maxPropertyCount sets a maximum number of properties to be examined when

performing observations which count or enumerate many properties. Unless you need

to have the most accurate schema in the GraphQL endpoint from the very start, it is

recommended to set this value. It will significantly speed up observations on large

datasets. A good default value is 1000 , and for best results, combine this value with hot

reloading, where each iteration of hot reloading increases it by an order of magnitude.

When analyzing the range for each attribute and association, a sample of up to

propertySampleSize occurences is selected, and their types are used to determine that

property's type. Setting propertySampleSize is highly recommended, with a reasonable

default being 100 or 1000 . While this setting may in some rare cases lead to the

generated schema missing some return types for some properties, leaving it unlimited

may result in errors during observation for large datasets, where the process is unable

to allocate enough memory to hold all of the observations.

2.3.3 Specialized configuration

- 13/44 - Charles University

ontologyPrefixIri sets the IRI for the ontology created during observation. You should

not need to modify this value from the default

http://skodapetr.eu/ontology/sparql-endpoint/ , unless you wish to save the observations

themselves and use them for other purposes.

By default, all properties in the created GraphQL schema are arrays, since in RDF, any

property can be specified multiple times. shouldDetectNonArrayProperties allows

observations which flag properties as scalars, making sure that properties are not

flagged as arrays unless they can really contain multiple values.

The created GraphQL schema contains comments which have additional information

about the data, namely for each property, it specifies how many times it occurs in the

dataset. This can be helpful when first exploring the schema, and deciding whether a

property is important or not. Setting shouldCountProperties to true will enable the

counting of properties, otherwise their counts will be set to 0 .

It is recommended to initially set both shouldCountProperties and

shouldDetectNonArrayProperties to false to ensure fast startup time, but to set them to

true in the hot reloading config. That way, the necessary observations will be carried

out in the background while you can already explore and query the dataset.

If set, observationsOutputPath dictates the path to which the collected observations

should be written. They are saved as a Turtle RDF file, so a .ttl suffix is

recommended. If this option is undefined , the observations will not be saved to disk.

Postprocessing

Read more about postprocessing here.

Schema

The schema configuration only contains one option:

interface SchemaConfig { graphqlSchemaOutputPath: string | undefined; }

If you set graphqlSchemaOutputPath to a valid file path, the generated GraphQL schema

will be saved to this path when it is generated. This can be useful if you want to use

some visualization tools to better aid you in exploring the created GraphQL endpoint.

2.3.3 Specialized configuration

- 14/44 - Charles University

https://en.wikipedia.org/wiki/Turtle_(syntax)

Server

The server configuration contains one option:

interface ServerConfig { port: number; }

The port option will configure the port where the GraphQL endpoint will be available.

The default value is 4000. If you visit this port in the browser, you will get access to an

instance of Apollo Studio Explorer, which will let you visually build GraphQL queries

and examine the GraphQL schema.

Model Checkpointing

Read more about model checkpointing here.

Hot reload

Read more about hot reloading here.

2.3.3 Specialized configuration

- 15/44 - Charles University

3. How it works

3.1 Overview of how it all works

This page will explain the process used by SPARQLess when creating a GraphQL

endpoint from the SPARQL endpoint.

3.1.1 Bootstrapping flow

First of all, the user should configure the application. The most basic configuration step

is to configure the SPARQL endpoint to observe. You can read more about configuration

here.

The bootstrapping phase of SPARQLess is divided into four distinct phases:

Observation

Model Parsing

Postprocessing

Schema Creation

The observation phase uses SPARQL queries to extract some information about the

schema of the data in the endpoint. There are many kinds of observations, but the most

basic ones are along the lines of X is a class with N instances or

Y is a property of class X . These observations are in the form of RDF data conforming

to an ontology defined by SPARQLess. This phase can take up to tens of minutes to

execute if the SPARQL endpoint contains a large amount of data.

After the observations are collected, the model parsing phase converts these

observations into a set of JavaScript objects describing the data schema. These objects

are referred to as descriptors, since they describe the data model.

The postprocessing phase is meant to execute functions called postprocessing hooks

on descriptors (parts of the model), after the whole model has been built. An example of

a postprocessing is giving each property and class in the model a short human-readable

name, which it does not necessarily have in the original RDF representation.

The schema creation phase takes the model and its descriptors, and converts it into a

GraphQL schema.

1.

2.

3.

4.

3. How it works

- 16/44 - Charles University

After all of these phases are performed, a GraphQL endpoint is started using the

generated schema (using Apollo Server). The whole flow we just described looks like

this:

As the diagram shows, at the end of the setup, there is a fully functional GraphQL

endpoint active, which the user is free to explore and query. Visiting the endpoint URL

in the browser will redirect the user to a playground, which provides helpful tools for

exploring and querying.

3.1.2 Querying flow

SPARQLess utilizes a query translation approach, whereby incoming GraphQL queries

are translated into SPARQL queries, executed on the SPARQL endpoint, and their

results are aggregated into a JSON response returned by the GraphQL endpoint.

3.1.2 Querying flow

- 17/44 - Charles University

https://www.apollographql.com/docs/apollo-server/

GraphQL querying is based on the concept of resolvers, which are functions, each of

which is able to return a single requested property. If the following GraphQL query is

sent to the GraphQL endpoint:

book { author { name } title }

then a resolver will be called for the books field, and when that resolver returns an

object, resolvers for the author and title fields will be run. SPARQLess resolvers

effectively translate each field query into a SPARQL query if the queried field contains a

non-scalar value. Scalar values are fetched with the parent object's query.

Execution of this example query would look like this:

3.1.2 Querying flow

- 18/44 - Charles University

https://graphql.org/learn/execution/

3.1.2 Querying flow

- 19/44 - Charles University

3.1.3 Components

The following is a list of components you can see in the diagrams above, with more

detailed descriptions of what they do and how they do it:

Observation

Model Parsing

Postprocessing

Schema Creation

Querying

Model Checkpointing

Hot Reloading

•

•

•

•

•

•

•

3.1.3 Components

- 20/44 - Charles University

3.2 Observation

When the application is configured, the user runs the app. Then the application starts

observing the SPARQL endpoint, and collecting observations in the form of RDF quads

(stored in the QueryResult type). These quads are generally constructed to have a blank

node subject representing a single observation, and its properties then describe that

observation.

3.2.1 Ontology

All observations conform to an ontology described in the ontology.ttl file, which

contains a RDFS definition of the observations in the Turtle format.

3.2.2 Observer system

Observation is essentially just a process where we need to execute many SPARQL

queries, where some queries have dependencies on outputs of previous queries. As an

example, we cannot observe the existence of properties on some class, before we even

know about the class' existence.

Therefore the observation logic is split up into observer classes, namely

EndpointObserver s and InitEndpointObserver s. These observers each collect a specific set

of observations. EndpointObserver s may declare dependencies on observations produced

by other observers. InitEndpointObserver s do not required any previous observations to

do their observations, and they produce the initial observations which are in turn used

by other observers.

The flow of data between observers and their invokation is handled by the

ObserverManager class. It collects the outputs of its registered observers, and triggers

observers which are subscribed to new observations accordingly.

Its usage looks as follows:

const observerManager = new ObserverManager(config); observerManager.subscribeInit(new ClassObserver()); observerManager.subscribe(new PropertyObserver()); observerManager.subscribe(new AttributeObserver()); observerManager.subscribe(new AssociationObserver()); observerManager.subscribe(new PropertyCountObserver()); const observations: Observations = await observerManager.runObservers();

3.2.3 Implemented observers

While it is possible for library users to implement and use their own observers, some

observers are pre-implemented to facilitate the main flow of SPARQLess.

3.2 Observation

- 21/44 - Charles University

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/turtle/

They each collect a single kind of observation from the ontology:

ClassObserver : collects ClassObservation s. These describe the existence of classes and their number of

instances in the dataset.

PropertyObserver : collects PropertyExistenceObservation s. These describe the existence of properties on given

classes.

AttributeObserver : collects AttributeObservation s. These describe attributes, i.e. properties whose ranges

contain literals (strings, ints, booleans, ...).

AssociationObserver : collects AssociationObservation s. These describe associations whose ranges contain other

classes.

PropertyCountObserver : collects PropertyCountObservation s. These count the number of occurences of a given

property in the dataset. This can be useful for users to determine which classes are important in the data.

PartialFunctionObserver : collects PartialFunctionObservation s. These describe properties which are guaranteed

not to be array-type properties, i.e. properties which are instantiated no more than once for any given class

instance.

InstanceObserver : collects InstanceObservation s. These describe the existence of class instances. (currently

unused)

The data flow between these observers looks like this:

•

•

•

•

•

•

•

3.2.3 Implemented observers

- 22/44 - Charles University

3.2.4 Observation speed

Essential observations for constructing the GraphQL schema are ClassObservation ,

PropertyExistenceObservation , AttributeObservation and AssociationObservation . Other

observations are optional, and they just enhance the schema further. If the fastest

startup time is desired, you may want to consider disabling non-required observations,

and configuring hot reloading to perform these additional observations in the

background while the GraphQL endpoint is already functional. In fact, the default

configuration used by SPARQLessConfigBuilder does exactly that.

An interesting bit of information about observation query performance is the fact that

in SPARQL endpoints with multiple graphs, adding a GRAPH ?g { ... } clause around

the query body led to significant performance improvements on certain queries.

Namely queries with many class instances across multiple graphs which originally took

tens of minutes now take a few minutes at maximum. While this change did slightly

increase execution times for other queries, the total observation time for endpoints

with mulitple graphs has improved dramatically.

3.2.4 Observation speed

- 23/44 - Charles University

3.3 Parsing

Observations made about a SPARQL endpoint are then parsed by the ObservationParser

class. It contains an implementation of an algorithm which converts RDF observations

into descriptors. Descriptors are plain JavaScript objects which describe the model of

the data in the SPARQL endpoint. They are the stepping stone between the RDF

observations, and creation of the GraphQL schema.

This parsing algorithm is not the only possible parsing algorithm for the observations

we are collecting. Observations are simply pieces of information to be interpreted, and

there are many ways of interpreting that information. The parsing algorithm

implemented is simply one which uses all of the observations SPARQLess is currently

collecting efficiently. There are currently no plans to let library users specify custom

parsing algorithms, but should the need arise, the library design is modular enough to

allow it.

3.3.1 Descriptors

This section contains a more thorough explanation of what each descriptor means, and

what it says about the underlying data. The following is a class diagram showing all of

the currently used descriptors:

3.3 Parsing

- 24/44 - Charles University

ResourceDescriptor

Describes any RDF resource which is identified by an IRI, i.e. classes and properties.

This descriptor also has a name field, which is meant to contain a GraphQL-compatible,

human-readable name, meaning a string only consisting of characters [_a-zA-Z0-9] .

This name is used as the GraphQL identifier for this resource. After all, it's much easier

for humans to read and reason about Label than

http://www.w3.org/2008/05/skos-xl#Label .

interface ResourceDescriptor { iri: string; name: string; }

This descriptor is extended by all other descriptors.

ClassDescriptor

Describes a single class present in the dataset.

interface ClassDescriptor extends ResourceDescriptor { numberOfInstances: number; attributes: AttributeDescriptor[]; associations: AssociationDescriptor[]; }

For example, if the dataset contains 5 dogs and 10 cats, we would have the following

class descriptors:

[{ iri: 'http://example.com/Dog', name: 'Dog', numberOfInstances: 5, attributes: [], associations: [], }, { iri: 'http://example.com/Cat', name: 'Cat', numberOfInstances: 10, attributes: [], associations: [], }]

PropertyDescriptor

Describes a property of a class. A property is any relation in the dataset where the

subject is a class. This descriptor is not instantiated on its own, rather it is always as an

instance of an AssociationDescriptor or an AttributeDescriptor .

interface PropertyDescriptor extends ResourceDescriptor { count: number; isArray: boolean; }

AssociationDescriptor

A special case of a property where its domain is another class. If an association has

multiple target classes, its range is their union.

interface AssociationDescriptor extends PropertyDescriptor { targetClasses: ClassDescriptor[]; }

In our cats and dogs example, let's say each cat has a friend among the dogs. That

would be modelled like so:

{ iri: 'http://example.com/Cat', name: 'Cat', numberOfInstances: 10, attributes: [], associations: [{ iri: 'http://example.com/friend', name: 'friend', count: 10, isArray: false, targetClasses: [{ iri: 'http://example.com/Dog', name: 'Dog', numberOfInstances: 5, attributes: [], associations: [], }], }], }

3.3.1 Descriptors

- 25/44 - Charles University

AttributeDescriptor

A special case of a property where its domain is a literal, i.e. a primitive value like a

string or an integer.

interface AttributeDescriptor extends PropertyDescriptor { types: string[]; languages: string[]; }

The types array contains a list of types in this attribute's range. If the types array

contains a language string type, then the languages array will hold a list of available

languages for this language string.

3.3.1 Descriptors

- 26/44 - Charles University

3.4 Postprocessing

The postprocessing phase occurs after the model (i.e. a set of descriptors) has been

built based on observations of the SPARQL endpoint, but before the GraphQL schema is

built.

It allows easy additions of various postprocessing activities on the model, like

modifying entities in ways which are not connected to model parsing.

An example of this is naming - simplified names are used for all named entities to

promote usability of the generated GraphQL endpoint. Since the names are calculated

from IRIs, this logic is decoupled from parsing, and it can be easily modified or

extended. You can even easily add your own implementation as a new postprocessing

hook, and switch it with the default implementation as needed.

3.4.1 Hooks

Postprocessing hooks are functions which are assignable to the PostprocessingHook type:

export type PostprocessingHook<TDescriptor extends EntityDescriptor> = (descriptors: TDescriptor[],) => void;

In other words, it's a function which takes a single parameter - the descriptors of a

particular type, and it returns nothing. For example, PostprocessingHook<ClassDescriptor>

would be run with the list of all ClassDescriptor s in the model. You can specify more

generic hook constraints, for example using ResourceDescriptor would run your hook

against all descriptors which have a display name property.

The contents of a hook will usually do one or more of the following things:

Modify the given descriptors in some way

Run some side effects which depend on the descriptor data

Log something about the descriptors

•

•

•

3.4 Postprocessing

- 27/44 - Charles University

You can run your own hooks by adding them in the postprocessing field of the root

configuration object. This field takes a PostprocessingConfig , and its hooks field contains

a dictionary containing the registered hooks for each descriptor type. These hooks are

then automatically executed as necessary.

NOTE: it is recommended to use DEFAULT_POSTPROCESSING_CONFIG as the basis for adding

your new hooks, since it also contains a registered hook for generating GraphQL

identifiers for classes and properties. Only create a whole new PostprocessingHookDict if

you want to replace the functionality of the buildNamesFromIRIs postprocessing hook

included in this library.

3.4.1 Hooks

- 28/44 - Charles University

3.5 Schema Creation

Schema creation occurs after postprocessing, at which point the data model has been

finalized in the form of descriptors.

This creation is the purpose of the createSchema function in src/api/schema.ts . It uses

the descriptors to produce a complete GraphQL schema in the form of a

NexusGraphQLSchema (from the GraphQL Nexus library).

Normally, a schema-first approach is used for modeling GraphQL APIs, meaning

developers would first write the GraphQL schema using a schema declaration

language, and they would then build their data model to fit that schema. However,

automatically generating a schema in the GraphQL schema language is quite

cumbersome and involves a lot of string manipulation.

Therefore SPARQLess uses GraphQL Nexus as a way to define the GraphQL schema.

GraphQL Nexus is a library which facilitates code-first, declarative schema

declarations. This means that defining the GraphQL schema is a matter of converting

each ClassDescriptor into a type definition in the GraphQL schema, and using its

related descriptors to definte the properties of that type.

Information like the number of instances is stored in the type and property descriptions

to aid developers in exploring the dataset.

3.5.1 Schema specifics

Classes

All classes observed in the dataset have a corresponding type created in the GraphQL

schema, and this type is always queryable from the root query.

Types in the root query support the following arguments:

sort: takes either ASC or DESC , will ensure the ordering of results. Class instances are sorted by their IRI.

limit: do not return more than limit results

offset: skip the first offset instances

filter: given an IRI, only return the instance with this IRI

•

•

•

•

3.5 Schema Creation

- 29/44 - Charles University

https://nexusjs.org/
https://nexusjs.org/

Attributes

Attributes are represented as fields on the source type. Strings are mapped to string

fields, ints are mapped to int fields, booleans are mapped to boolean fields and lang

strings (strings which are tagged with a language in the RDF dataset) are mapped to

objects containing the respective languages as fields.

Other types are mapped to string fields by default.

Attribute fields except for language strings and booleans support sort , limit and

offset arguments. For booleans these arguments do not make sense. They may be

implemented for language strings in the future.

Associations

Associations are represented as fields on the source type, with the target type being

one of the following:

The target type if the associaton only has a single target type

A newly created union type joining all target types of the associaiton in case the association has multiple target

types.

Association fields support sort , limit , offset and filter arguments.

•

•

3.5.1 Schema specifics

- 30/44 - Charles University

3.6 Querying

NOTE: This introduction is identical to the introduction given in the overview. If you

have already read it, you may skip to the other subsections of this article.

SPARQLess utilizes a query translation approach, whereby incoming GraphQL queries

are translated into SPARQL queries, executed on the SPARQL endpoint, and their

results are aggregated into a JSON response returned by the GraphQL endpoint.

GraphQL querying is based on the concept of resolvers, which are functions, each of

which is able to return a single requested property. If the following GraphQL query is

sent to the GraphQL endpoint:

book { author { name } title }

then a resolver will be called for the books field, and when that resolver returns an

object, resolvers for the author and title fields will be run. SPARQLess resolvers

effectively translate each field query into a SPARQL query if the queried field contains a

non-scalar value. Scalar values are fetched with the parent object's query.

Execution of this example query would look like this:

3.6 Querying

- 31/44 - Charles University

https://graphql.org/learn/execution/

3.6 Querying

- 32/44 - Charles University

3.6.1 Query root execution

NOTE: The following description of query execution functionality describes the way it

is implemented in this library. This is not the only possible way of implementing

querying, and the design of this library accounts for different possible implementations

in the future.

Each GraphQL query has a root Query object, whose fields are all object types

extracted from the SPARQL endpoint. Each of these fields is a non-null list of objects,

which are resolved with a class resolver (implemented by the createClassResolver

factory function).

The class resolver is a function which is called by Apollo Server any time class

instances are requested as part of a GraphQL query. Its job is to return the requested

instances as plain JavaScript objects. It does this by looking at the requested fields for

these objects, and executing a SPARQL query which returns a list of IRIs representing

the objects to be returned from the resolver.

If we take the following GraphQL query:

dcat_Dataset(limit: $limit) { title { cs en } conformsTo }

then the corresponding SPARQL IRI query will look like this:

SELECT DISTINCT ?instance WHERE { ?instance a <http://www.w3.org/ns/dcat#Dataset> . ?instance <http://purl.org/dc/terms/title> [] . ?instance <http://purl.org/dc/terms/conformsTo> [] . } LIMIT 10

Afterwards, the class resolver takes the received instance IRIs, and for each of them,

it executes a SPARQL query asking for that instance's properties which have been

requested by the GraphQL query.

Assuming one of the IRIs returned by the previous query was

https://data.gov.cz/zdroj/datové-sady/00297569/3384952 , then the followup query asking

for this instance's properties will look like this:

SELECT ?property ?value WHERE { VALUES (?property) { (<http://purl.org/dc/terms/title>) (<http://purl.org/dc/terms/conformsTo>) } <https://data.gov.cz/zdroj/datové-sady/00297569/3384952> ?property ?value . }

Finally, the class resolver will create a plain JavaScript object containing the returned

properties, and it will return it to Apollo Server. Apollo Server will then execute a

resolver for each field on this object.

3.6.1 Query root execution

- 33/44 - Charles University

These additional resolvers are responsible for taking the data retrieved by the class

resolver, and converting it into the appropriate format for return as the GraphQL query

response. What this means in practice is that while everything is stored as a string in

RDF, these additional resolvers have to convert these strings to the appropriate data

types for their respective fields. For example, a boolean field resolver would parse the

retrieved string into a boolean.

This chaining of resolvers will occur recursively for each field of objects nested in the

query, until all fields have been resolved. The final GraphQL response for our example

scenario will look like this:

"data": { "dcat_Dataset": [{ "title": { "cs": ["Moravskoslezský kraj - úřední deska"], "en": ["Official bulletin board of Moravian-Silesian Region "] }, "conformsTo": ["https://ofn.gov.cz/úřední-desky/", "https://ofn.gov.cz/úřední-desky/2021-07-20/"] }, ...] }

The concept of resolvers is described in more detail in the official GraphQL

documentation in case you wish to learn more.

3.6.1 Query root execution

- 34/44 - Charles University

https://graphql.org/learn/execution/
https://graphql.org/learn/execution/

3.7 Model Checkpointing

The observation phase can take quite a long time, and it is undesirable to have to wait

for the entire observation phase to happen again every time you want to start the

GraphQL endpoint.

Therefore SPARQLess allows you to use the following options to save the generated

data model to disk, and then later reuse it instead of carrying out observations again.

3.7 Model Checkpointing

- 35/44 - Charles University

interface ModelCheckpointConfig { loadModelFromCheckpoint: boolean; saveModelToFile: boolean; overwriteFile: boolean; checkpointFilePath: string; }

checkpointFilePath points to the file which will be used to store/load model checkpoints.

If saveModelToFile is set to true , the model will be saved to the configured file after it is

built from the observations. If the file already exists and overwriteFile is set to false ,

the file will not be overwritten by the new checkpoint.

3.7 Model Checkpointing

- 36/44 - Charles University

If loadModelFromCheckpoint is set to true , at startup, SPARQLess will check whether the

checkpoint exists. If it does, then it will use the model checkpoint rather than carrying

out observations again.

3.7 Model Checkpointing

- 37/44 - Charles University

3.8 Hot reloading

Hot reloading of the GraphQL schema means updating the running GraphQL server's

schema while it is already running. The reason for why you may want to do this is that

observing very large datasets can take a very long time, and users may not want to wait

for 2 hours before they can even look at the schema or query the endpoint.

Therefore, only the required observations for actually building a schema are performed

at startup when using hot reloading. More in-depth observations (i.e. accurate property

counts) are then performed in the background, once the server is already running, and

the user is able to query it.

The schema is then seamlessly updated, and if the user is using the default playground

which is started with SPARQLess, they don't even need to refresh their browser window

to see the new schema - it refreshes itself automatically.

In the following diagram, you can see how the GraphQL schema continues to be

updated in the background while the user is free to explore and query the endpoint:

3.8 Hot reloading

- 38/44 - Charles University

3.8.1 How it works

After the server starts, the hotReloadServerSchema function of the SPARQLess class can be

used to run hot reloading. Firstly, hot reloading must be configured in the Config . It is

enabled by default, and the default configuration looks like this:

hotReload: { configIterator: (config, _oldModel) => { // Examine 10 times more properties than in the last iteration. const newConfig = cloneDeep(config); if (newConfig.maxPropertyCount) { newConfig.maxPropertyCount *= 10; } return newConfig; }, shouldIterate: (_config, oldModel, newModel) => { // Check if the maximum property count changed in the last iteration. // If not, then there is no point in continuing to count them, since // we already have everything counted. const getMaxPropertyCount = (model: ClassDescriptor[]) => Math.max(...model .flatMap((x) => [...x.attributes, ...x.associations]) .map((x) => x.count),); const maxPropertyCountOld = getMaxPropertyCount(oldModel); const maxPropertyCountNew = getMaxPropertyCount(newModel); if (maxPropertyCountOld === maxPropertyCountNew) { return false; } return true; }, },

3.8.1 How it works

- 39/44 - Charles University

The hot reload algorithm can be described as the following:

Get a new ObservationConfig for the next round of observations. This config is

obtained using the configIterator function from the hot reload configuration.

Conduct a new round of observations, which are more detailed and likely take more

time than the previous round. The default behavior is to count up to 10 times as

many property instances than the previous round of observation.

Hot-reload the running GraphQL endpoint's schema

Poll the shouldIterate function from the hot reload configuration about whether or

not the hot reloading should keep iterating. If it returns true , the algorithm loops. If

false , hot reloading stops for good.

1.

2.

3.

4.

3.8.1 How it works

- 40/44 - Charles University

4. Developer Guide

4.1 Development

Build, lint and test are automatically run in GitHub Actions. They are required to pass

for every PR and commit to master . For every commit to master , a new Docker image

is also built and pushed to the GitHub Container Registry.

Contributions should be in the form of PRs opened against master , containing a

comprehensive description of what was changed and why. Bonus points if you include a

video or screenshot showcasing the functionality. Tests should also be included with

contributions. If your PR is not addressing an existing issue, please first raise an issue

on GitHub and discuss the implementation with the maintainers.

Development should follow GitHub Flow and commit messages should follow the

Conventional Commits spec.

4.1.1 Useful commands

The following commands will likely be useful to you during development.

Install dependencies

npm ci or npm install - both will install the dependencies, but npm ci will make sure

that they match package-lock.json exactly, and may take longer to run.

Compile everything

npm run build will compile the TypeScript files.

Linting

npm run lint will list all linting issues without fixing them automatically.

Formatting (lint w/ autofix)

npm run format will run linting and auto-fix all possible issues.

4. Developer Guide

- 41/44 - Charles University

https://githubflow.github.io/
https://www.conventionalcommits.org/en/v1.0.0/

Running

npm start will start the app.

Alternatively, if you use VSCode for development, a Debug API debug config is included

in the repository. Running this debugging config will automatically compile the required

files and run src/main.ts in debug mode.

Testing

npm test will run tests with Jest and generate a testing + coverage report.

4.1.1 Useful commands

- 42/44 - Charles University

4.2 Editing documentation

This documentation is generated using mkdocs from the Markdown files in the docs

directory, and manually deployed to GitHub Pages with mkdocs gh-deploy . The URL for

the deployed documentation is https://mff-uk.github.io/sparqless/.

If you want to modify the documentation, simply modify the Markdown source of

whichever documentation you wish. If you create a new documentation page, you will

need to add it to the nav in mkdocs.yml :

nav: - Home: 'index.md' - 'User Guide': - Usage: 'usage.md' - 'How it works': - Overview: 'overview.md' - Observation: 'observation.md' - Parsing: 'model_parsing.md' - Postprocessing: 'postprocessing.md' - 'Schema Creation': 'schema.md' - Querying: 'querying.md' - 'Developer Guide': - Development: 'development.md'

4.2.1 Installing requirements

In order to build, serve or deploy the documentation, you will need to have Python 3

installed, since it is required to run mkdocs.

To install mkdocs and other required plugins, run pip install -r requirements.txt .

4.2.2 Viewing documentation locally

Run mkdocs serve to build the documentation and serve it on localhost. In the terminal,

you will see a link to open this documentation in your web browser.

4.2.3 Generating PDF documentation

If for any reason you want to have a PDF version of the documentation, run

mkdocs build . This will generate a PDF containing the documentation in

site/pdf/documentation.pdf .

Note that you may see an error about a missing theme during build - this is unavoidable

when using the same mkdocs.yaml for both the website and the PDF documentation, and

you may safely ignore this error.

4.2.4 Diagrams

Diagrams are generated with PlantUML, which is a tool for generating UML diagrams

out of text descriptions.

4.2 Editing documentation

- 43/44 - Charles University

https://www.mkdocs.org/
https://mff-uk.github.io/sparqless/
https://www.mkdocs.org/
https://plantuml.com/

The source files for all diagrams contained in this documentation are in the diagrams

folder.

4.2.5 Deploying documentation

If you want to deploy the documentation to GitHub Pages, run mkdocs gh-deploy , and the

updated documentation should be available at https://mff-uk.github.io/sparqless/ within

a few minutes. Note that you may need to refresh the page without caching in order to

see the changes (Ctrl + F5 or Shift + F5 in Google Chrome).

4.2.5 Deploying documentation

- 44/44 - Charles University

https://mff-uk.github.io/sparqless/

	SPARQLess
	1. SPARQLess
	1.1 Running it in Docker
	1.2 Using the library in code

	2. User Guide
	2.1 Running SPARQLess in Docker
	2.1.1 Mounting Artifacts

	2.2 Usage guide
	2.2.1 Installing dependencies
	2.2.2 Library interface
	2.2.3 Edit configuration
	2.2.4 Run it
	2.2.5 Explore the schema
	2.2.6 Hot reloading
	2.2.7 Query the endpoint

	2.3 Configuration
	2.3.1 Using the builder
	2.3.2 General configuration
	2.3.3 Specialized configuration
	Observation
	Postprocessing
	Schema
	Server
	Model Checkpointing
	Hot reload

	3. How it works
	3.1 Overview of how it all works
	3.1.1 Bootstrapping flow
	3.1.2 Querying flow
	3.1.3 Components

	3.2 Observation
	3.2.1 Ontology
	3.2.2 Observer system
	3.2.3 Implemented observers
	3.2.4 Observation speed

	3.3 Parsing
	3.3.1 Descriptors
	ResourceDescriptor
	ClassDescriptor
	PropertyDescriptor
	AssociationDescriptor
	AttributeDescriptor

	3.4 Postprocessing
	3.4.1 Hooks

	3.5 Schema Creation
	3.5.1 Schema specifics
	Classes
	Attributes
	Associations

	3.6 Querying
	3.6.1 Query root execution

	3.7 Model Checkpointing
	3.8 Hot reloading
	3.8.1 How it works

	4. Developer Guide
	4.1 Development
	4.1.1 Useful commands
	Install dependencies
	Compile everything
	Linting
	Formatting (lint w/ autofix)
	Running
	Testing

	4.2 Editing documentation
	4.2.1 Installing requirements
	4.2.2 Viewing documentation locally
	4.2.3 Generating PDF documentation
	4.2.4 Diagrams
	4.2.5 Deploying documentation

